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MODELING LARGE-SCALE MIXING PROCESSES IN AN EXPANDING SUPERSONIC JET

N. A. Zheltukhin and N. M. Terekhova UDC 532.526

The existence of large-scale instability waves realizing large-scale mixing processes
in supersonic turbulent jets is an important factor affecting both the flow structure and
the noisemaking process therein. It is detected that such fluctuations in subsonic jets
can result in the formation of coherent structures of the type of toruses, simple and double
spirals, which under their further evolution will result in the generation of broadband
noise and noise associated with the nonlinear development of instability waves [1].

Because of the technical complexity of their formulation, there are extremely few such
experiments for high-velocity jets; consequently, many aspects of flow and instability wave
interaction still have not been elucidated finally [2, 3]. In this situation it is impossible
to underestimate the efficiency of mathematical modeling methods, which can contribute to
the comprehension of definite stages in such an interaction. There have not been such re-
searches for supersonic jets.

Speaking of the kind of large-scale waves that are evolutionary in a supersonic flow,
it is necessary to note that the most important are the perturbations called the jet column
mode which damp out both the mixing layer and the potential kernel during their development.
As compared with the shear-layer mode originating at the root of the jet, they carry more
energy, have a broad frequency spectrum, and are more characteristic for jets. The frequency
and structural forms of such waves have been studied well enough [4-6].

Investigated in this paper are interaction processes of finite intensity perturbations
of the jet-column-mode type with a design supersonic turbulent axisymmetric cold jet at
its initial section. It is assumed that the fine-scale turbulence is in the energetic equi-
librium state with the mean flow and exerts no influence on its development. There is exam-
ined what changes can occur in the stream under the action of unit waves of different spec-
tral form (axisymmetric n = 0, and azimuthal or spinal n = 1 and 2) and more complex fluctua-
tions of flapping type (the superposition of synchronized right- and left-twisted spirals
n = *1 and 12).

The mean velocity vector u = |U,, O, wol of such a flow has both a radial U, and a
longitudinal W, component. Here and henceforth, dimensionless quantities are used, the
nondimensionalization is performed by dividing by r (the initial radius), and W, p (the
longitudinal velocity and density in the flow core). In the jet core (r < r; =1 = §/2)u =
|0, 0, 1|, in the external field (r > r, = 1 + §/2)u = |0, 0, O, and in the mixing layer
of thickness 8(r; < r < r,) the longitudinal component is approximated by the Schlichting
relationship {7]

Wo=1—(1—qb%2 nq=(1—r-+82)/6 0<n< 1.
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The distribution W, is a typical inviscid unstable profile with inflection at r = 1 +
0.103154.

For an isobaric jet of ideal compressible gas the known gasdynamic formulas can be
used and the flow parameters can be expressed in terms of the velocity W; and the Mach number
M, on the axis

po=[0.2M2(1 — W) +1]7%, o} =[pMs]™"s

and the radial component U; in the mixing layer can be found from the continuity equation

a a -
ﬁrPoU():—r'g;poWo for Uy(r=r,)=0,

The law connecting § and z [§ = bz, b = 0.135(1 + p,(r,))] is taken from the relationship
presented in [7]. The fundamental flow characteristics are given in Fig. 1 for M, = 1.5
and § = 0.35. The spectral characteristics and structural forms of the instability waves
{u:" u:l” u;’ pli p,’ S’} (7‘, @, 3, t) = M{il), w,u, g, H1 S} (r) eit!lg
0y = 0z — ot 4 ne,

where « is the amplitude parameter, are obtained from the linearized equations describing
the behavior of small perturbations in a compressible nonheat-conducting inviscid fluid
[8]. As is shown in [3], this approximation describes the fluctuation shape and character-
istics well up to an 87 wave intensity. There remains to add that the influence of the
radial velocity U, and the dependence «k(z) on the wave is also not taken into account. The
results in [5], where it is shown by the methods of different scales that the influence

of these factors is negligible for low supersonic velocities (M, ~ 1.5), are the basis for
such a simplification.

A simple finite intensity wave induces Reynolds stress in the flow, which is homogeneous
in the azimuthal angle ¢ , where us'= 0 for axisymmetric fluctuations. Let us write some of
them down (averaged over the phase space ¢;):

(Y = w2 (Y exp (— 22)/2, Culdy = % (w?) exp (— 20,2)/2,
Cunityy = %2 (vud exp (— 20:2)/2, (p'uz)y = %2 {gu) exp (— 20;2)/2.

The real part of the corresponding complex amplitudes

(UM) = DyU; — Dilly, <Uz> = D;')' + U?
are written in the angular brackets.

As a rule, the right- and left-sided azimuthal waves are synchronized in amplitude
and phase [3] in the linear growth domain; consequently, their superposition yields a wave
of the following kind:

’ ’ . i0y
{vr, uz, o'y P’y 8’} = 2 {iv, u,. g, I, s}e " cosng,

’ . ) ‘50'2 .
U = 2inwe " sinng, 0,=0z— ot,
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The Reynolds stress produced by such flapping fluctuations will be periodic in the azimuthal
angle with period T = 7/n; for instance,

(u?) = 212 {(v*) exp (— 20,;z) cos® ng, <u;;2>‘= 2% (w?) exp (— 2a;2) sin® ne,

(uyy = 2u2 (ouy exp (— 2a;2) C0s? R, (Uyly) = %2 (vw) exp (—2a;z)sin2ng.

The evolution of the mean flow is studied on the basis of numerical integration of the
system of averaged equations of motion (the Euler system), the continuity and entropy con-
servation equations. This system is written in the form of conservation laws as

oF 9K 1 oL

BN 0
e Tre T E =0

where !

F = p, pU, pV, pW, pS|;
oU + {p'ury
pU + P + p (uy + 2U (p'ur)
K =|pUV + p (uttgy + U {p"ug)+V {p'ur)
pUW + pluny + U p'uyy + W (p'wyd
pUS + p<us’y + U (p's’> + S <p'ur
oV + <p'up)
K (3]
L=|oV2+ P + pCugy + 2V {p'ug) ;
OVW + p Cugusy + V {p'uty + W {p'ug)
PVS + p<uqs’y + V<p's'> + S<p'ug)
oW + (p'u;)
K [4}
N =|L[4]
pW? + P + pCu’> + 2W {p'uy)
pWS + p Cues’y + WLp's'y + S (p'usd

K]
K[21— L{3] - F,
0 =|2K3] ;
K4 —F,
K 5]

F, and F, are the equivalent of viscous forces realizing spreading of the jet. The numerical
integration is by the MacCormack scheme (explicit second-order difference scheme [9]). The

distributions Uy, W,, p, as well as V, = 0, P, = 1, S, = =In(p,) were taken as initial values.
TABLE 1
B ¥
%y [-7] N o, o a oy a; o
[+ z \L \L l
=% 2 =]
% b &
n=29 n=1 noe==2
0,20 }0,8768 1,7834 | —0,9080 | 4,9147 s
0,25 11,0960 . 1,8739 | —0,8742 | 6,7957
0,30 |1,3152 11,8397} —0,7088 16,4525] 1,9697 | —0,8199 | 8,6413 |2,0862| —0,8595 | 9,5902
0,35 |1,5342 |1,9200] —0,6292 [6,8963] 2,0643 | —0,7377 | 9,6200 |2,2026] —0,7390 | 9,6600 .
0,40 |1,7536 |1,9844( —0,5193 16,1803) 2,1444 | —0,6225 | 8,8735 [2,2949] —0,5750 | 7,5131
045 |1,9728 |2,0131] —0,3848 |4,5645] 2,1900 | —0.4785 | 6,6070 |2.3349| —0.3765 | 44169
0,50 |2,1920 2.4852 | —0,3278 | 4,2084
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A variant of flow and wave parameters convenient for numerical integration within the
limits of the formulated purpose of clarifying the qualitative features of the expanding
flow structure was taken for the computation. This is, first, the regime of moderate super-
sonic velocities My, = 1.5, which permitted us to limit ourselves to a linear approximation
for the wave analysis; second, moderate frequencies Sh = 0.4 (Sh = wr/7W) from the domain
of the most unstable for a given Mach number; third, the range of mixing layer thicknesses
0.2 < § < 0.5, within whose limits the waves grow, reach saturation, and start to damp out;
and, finally, the value k = 0.005 for this normalization of the waves (maxIHI = 1) yields
its intensity <107 of the mean velocity W,.

Presented in Table 1 are values of the parameters used in the computation.

Amplitude functions of certain Reynolds stress components are shown in Fig. 2 for the
limit values § = 0.2 and 0.5 (lines 1 and 2, respectively) of the flapping-type perturbations
n = t1 (a is the amplitude of <v2> and <vw>; b of <w?> and <u?>; ¢ of <vu> and <wu>). Be-
cause of the diminution of the mean velocity gradients in the mixing layer, smoothing of
the appropriate amplitude stress functions occurs downstream, with the exception of the quan-
tities associated with the component ue'. Such a nature of the behavior of the additional
terms of the system results in the fact that it is difficult to extract the principal terms
in it that influence the redistribution processes for different §.

Let us consider the action of unit waves. Shown in Fig. 3 in the form of the velocity
defect AW = W — W, are the changes which the longitudinal component of the mean profile can
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undergo under the effect of waves in one section (z = const) at the time t = 0.2. It is
seen that a homogeneous roller or crest occurs for all angles ¢, which can be considered as
the initial shape of the secondary flow structure being generated. All the velocity changes
take place in the mixing layer; the section § = 0.35 is given in Fig. 3, in which they are
maximal. The dynamics of strain growth is in complete conformity with the data of Table

1, it increases from the initial section, reaches the maximum for & = 0.35, and later starts
to decrease downstream according to exp (—2a;z). For equality of the amplitude parameter «
the waves of the spiral modes cause a large deformation of the velocity field W, which in-
creases as the azimuthal number n grows.

The unit axisymmetric fluctuations for which u¢' = 0 do not induce a tangential com-
ponent V, it appears for the spiral modes.

The velocities are deformed more complexly under the action of the flapping fluctuations,
the azimuthal dependences are tracked clearly here, their repeatability is determined by
the quantity n; thus, for n = #1, the repetition rate is T = w/2, while for n = 2, T = /4.
A typical pattern of the change in W in the investigated domain & is presented in Fig. 4
(6§ = 0.2, 0.35, 0.5, a-c) for n = *1; ¢= 0, w/4, 7/2 (lines 1-3) at the time t = 0.5. The
dynamics of the deformation of W downstream reflects the longitudinal evolution of the wave
and the diminution of the mean gradients while the tangential changes are related to the
initial periodicity of the waves and the Reynolds stresses in ¢. Such a wave produces rollers
and troughs in the stream, which respectively accelerated and decelerate it in different
azimuthal positions. This is reflected here schematically. Azimuthal motion of the gas
mass also occurs at certain azimuthal positions; it is absent for the parameters under con-
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sideration in positions 1 and 3, masked completely by the radial spreading, and it is maximal
at positions 2. This results in moderate twisting of the flow, and the maximal angle of
deviation of the velocity vectors U and V reaches 10-13°. The representation of such an
additional deformation of the fields U and V is given in Fig. 5, where the velocity V and

the defect AU = U — U, are shown at the position § = 0.35, ¢ = /4 for the same time.

Presented in Fig. 6 are the comparative deformations producible by the modes n = %1
and +2 (lines 1 and 2) at different azimuthal positions ® = 0 and v/4 (a, b) for the same §
and t = 0.1. Exactly as for unit fluctuations, the maximal changes are associated with waves
of higher azimuthal modes although the action of the latter is more local because of their
high periodicity. The characteristics p and S undergo similar changes. Therefore, flapping
type waves can cause a complex mass redistribution in the mixing layer, which will result
in a more complex secondary flow structure in the domain of finite amplitude wave action.

As a rule, perturbations consisting of axisymmetric n = 0 and flapping n = *1 fluctua-
tions [3], are identified in the spectrum of a naturally excited jet, and their action on
the flow, depending on the amplitudes and quantitative composition of the wave, will be com-
prised of the simpler actions 'examined above.

The numerical modeling performed shows that large-scale finite-intensity fluctuations
will result in finite deformations of the flow characteristics. Such deformations can be
detected by careful and purposeful experimental measurement in different azimuthal planes.
The appearance of such a fine secondary structure in the flow should undoubtedly affect even
the production of jet noise.
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